Advances in photoinduced radical–polar crossover cyclization (RPCC) of bifunctional alkenes
Abstract
The term “cyclic architectures” refers to a class of molecules that are highly valuable and play significant roles in organic compounds. Therefore, there is growing interest in researching the development of efficient and straightforward methods for constructing these complex structures. Photoinduced radical–polar crossover cyclization (RPCC) of bifunctional alkenes represents a class of reactions that are of great synthetic utility because they show high chemoselectivity, broad functional group tolerance and proceed under mild conditions to produce high-value cyclic products with precise alkene design. This mini-review summarizes the recent representative advances in the development of RPCC over the past two decades through different synthetic strategies in the reactions, highlighting their product diversity, selectivity and applicability, and the mechanistic rationale where possible. The intention is to provide readers with a comprehensive understanding of the current state-of-play in this field and contribute to future research efforts.
- This article is part of the themed collections: 2024 Organic Chemistry Frontiers HOT articles and 2024 Organic Chemistry Frontiers Review-type Articles