Issue 3, 2024, Issue in Progress

Morphological, structural, optical and dielectric analysis of Cs2TiBr6 perovskite nanoparticles

Abstract

In the pursuit of lead-free perovskite materials suitable for harnessing solar energy, a recent discovery has emerged regarding Cs2TiBr6. This compound has garnered attention as a prospective candidate, exhibiting favorable optical and electrical characteristics alongside exceptional resilience when subjected to environmental strains. This study details the successful synthesis of non-hazardous metal halide nanoparticles of Cs2TiBr6 via the slow cooling method. Comprehensive investigations into the structural, optical, and dielectric characteristics have been undertaken. The temperature sensitivity of various electrical properties, including the dielectric constant, loss factor, electric modulus, and AC/DC conductivity, is evident in this perovskite material. This phenomenon is observed across a frequency range of 1 to 107 Hz. Furthermore, examination of the Nyquist plot highlights the distinctive contributions of both grain and grain boundaries to the overall impedance characteristics. In the high-frequency range, it is observed that the dielectric constant exhibits an upward trend as the temperature rises. Examination of the adapted Cole–Cole plot unveils that both space charge and free charge conductivity escalate with increasing temperature, while concurrently, the relaxation time experiences a reduction with the temperature's ascent. We observed an asymmetrical pattern in the electric modulus spectra at varying temperatures using a modified Kohlrausch–Williams–Watts equation. This asymmetry is consistent with the inherent non-Debye nature of perovskite materials. Additionally, as the temperature increases, we note a shift in the imaginary component of the electric modulus spectra, transitioning from a non-Debye character towards a semi-Debye nature, though it does not achieve a strictly Debye-type response. This transformation indicates the semiconducting properties of the material. We elucidate the AC conductivity behavior in Cs2TiBr6 by employing the non-overlapping small-polaron tunneling (NSPT) mechanism as the basis. The activation energy, as determined from both the modulus spectra and DC conductivity, aligns closely, providing robust evidence for the congruence between the relaxation dynamics and the conduction mechanism. In addition to these attributes, Cs2TiBr6 exhibits a substantial dielectric constant coupled with negligible dielectric loss, thus establishing its potential suitability for energy harvesting devices.

Graphical abstract: Morphological, structural, optical and dielectric analysis of Cs2TiBr6 perovskite nanoparticles

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
09 Oct 2023
Accepted
14 Dec 2023
First published
04 Jan 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 1634-1648

Morphological, structural, optical and dielectric analysis of Cs2TiBr6 perovskite nanoparticles

M. Ben Bechir and F. Alresheedi, RSC Adv., 2024, 14, 1634 DOI: 10.1039/D3RA06860A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements