Issue 2, 2024, Issue in Progress

Portable glucose sensing analysis based on laser-induced graphene composite electrode

Abstract

In this work, a portable electrochemical glucose sensor was studied based on a laser-induced graphene (LIG) composite electrode. A flexible graphene electrode was prepared using LIG technology. Poly(3,4-ethylene dioxythiophene) (PEDOT) and gold nanoparticles (Au NPs) were deposited on the electrode surface by potentiostatic deposition to obtain a composite electrode with good conductivity and stability. Glucose oxidase (GOx) was then immobilized using glutaraldehyde (GA) to create an LIG/PEDOT/Au/GOx micro-sensing interface. The concentration of glucose solution is directly related to the current value by chronoamperometry. Results show that the sensor based on the LIG/PEDOT/Au/GOx flexible electrode can detect glucose solutions within a concentration range of 0.5 × 10−5 to 2.5 × 10−3 mol L−1. The modified LIG electrode provides the resulting glucose sensor with an excellent sensitivity of 341.67 μA mM−1 cm−2 and an ultra-low limit of detection (S/N = 3) of 0.2 × 10−5 mol L−1. The prepared sensor exhibits high sensitivity, stability, and selectivity, making it suitable for analyzing biological fluid samples. The composite electrode is user-friendly, and can be built into a portable biosensor device through smartphone detection. Thus, the developed sensor has the potential to be applied in point-of-care platforms such as environmental monitoring, public health, and food safety.

Graphical abstract: Portable glucose sensing analysis based on laser-induced graphene composite electrode

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
12 Oct 2023
Accepted
12 Dec 2023
First published
02 Jan 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 1034-1050

Portable glucose sensing analysis based on laser-induced graphene composite electrode

Z. Zhang, L. Huang, Y. Chen, Z. Qiu, X. Meng and Y. Li, RSC Adv., 2024, 14, 1034 DOI: 10.1039/D3RA06947H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements