Issue 8, 2024, Issue in Progress

Bimetallic nanoparticle production using Cannabis sativa and Vitis vinifera waste extracts

Abstract

The utilization of waste materials for the synthesis of nanoparticles has gained significant attention due to its potential for waste valorization and contribution to circular economy. In this study, bimetallic nanoparticles were produced using extracts derived from Cannabis sativa and Vitis vinifera waste, focusing on their green synthesis and antimicrobial activity against Gram-negative bacteria, specifically several strains of Pseudomonas aeruginosa. The Vitis vinifera canes and post-extraction waste from Cannabis sativa were processed using an ethanol extraction method. The extract was then mixed with silver nitrate and tetrachloroauric acid solution at different reagent ratios to optimize the synthesis process. The resulting bimetallic nanoparticles (AgAuNPs) were characterized using UV-vis spectrophotometry, transmission electron microscopy, atomic absorption spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The antimicrobial activity of the biosynthesized AgAuNPs was evaluated against various strains of Pseudomonas aeruginosa. The minimal inhibitory concentration (MIC) was determined using a microcultivation device, and the minimal bactericidal concentration (MBC) was determined through subsequent solid medium cultivation. Additionally, the minimal biofilm inhibitory concentration (MBIC) was assessed using a polystyrene microtiter plate as biofilm carrier and measured through an assay determining the metabolic activity of biofilm cells. The results demonstrated successful synthesis of bimetallic nanoparticles using the extracts from Cannabis sativa and Vitis vinifera waste. The AgAuNPs exhibited significant antimicrobial activity against the tested Pseudomonas aeruginosa strains, inhibiting their growth and biofilm formation. These findings highlight the potential of waste valorization and circular economy in nanoparticle production and their application as effective antimicrobial agents. This study contributes to the growing field of sustainable nanotechnology and provides insights into the utilization of plant waste extracts for the synthesis of bimetallic nanoparticles with antimicrobial properties. The findings support the development of eco-friendly and cost-effective approaches for nanoparticle production while addressing the challenges of waste management and combating microbial infections.

Graphical abstract: Bimetallic nanoparticle production using Cannabis sativa and Vitis vinifera waste extracts

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
19 Oct 2023
Accepted
30 Jan 2024
First published
09 Feb 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 5309-5318

Bimetallic nanoparticle production using Cannabis sativa and Vitis vinifera waste extracts

J. Michailidu, A. Miškovská, I. Jarošová, A. Čejková and O. Mat’átková, RSC Adv., 2024, 14, 5309 DOI: 10.1039/D3RA07134K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements