Issue 6, 2024, Issue in Progress

Aluminum-based ceramic/metal composites with tailored thermal expansion fabricated by spark plasma sintering

Abstract

We have devised a moderate temperature spark plasma sintering route for preparing aluminum matrix composites which possess tailored coefficients of thermal expansion (CTEs) in combination with tunable electrical and thermal conductivities. Due to its isotropic negative thermal expansion over a wide temperature range, cubic-phase ZrW2−xMoxO8 (x = 0.0, 1.0) is an ideal secondary phase for metal matrix composites with suitable CTEs. In this study, high-density ZrW2O8/Al and ZrWMoO8/Al composites containing 30–70 vol% Al were fabricated using spark plasma sintering. X-ray diffraction analysis indicated that the composites were composed of a thermally-stable cubic phase at temperatures as high as 873 K for ZrW2O8 and 773 K for ZrWMoO8, without any orthorhombic high-pressure phase derived from the large thermal mismatch between the ceramic and metal during sintering. The thermal expansion curves of the ZrW2−xMoxO8/Al composites were consistent with the predictions made using the Rule-of-Mixtures. The CTEs could be controlled from negative to positive and even close to zero by simply varying the volume fraction of aluminum. Similarly, the thermal and electrical conductivity of the ZrW2−xMoxO8/Al composites increases with increasing Al content, which is thought to be mainly related to the contribution of the free electron conduction path of Al in the composites.

Graphical abstract: Aluminum-based ceramic/metal composites with tailored thermal expansion fabricated by spark plasma sintering

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
07 Nov 2023
Accepted
20 Jan 2024
First published
29 Jan 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 3952-3961

Aluminum-based ceramic/metal composites with tailored thermal expansion fabricated by spark plasma sintering

H. Wei, C. Li, Y. Xu, X. Zhang, J. Li, Y. Han, M. Li and X. Xu, RSC Adv., 2024, 14, 3952 DOI: 10.1039/D3RA07593A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements