Issue 3, 2024, Issue in Progress

Physical properties of vacancy-ordered double perovskites K2TcZ6 (Z = Cl, Br) for spintronics applications: DFT calculations

Abstract

Vacancy-ordered double perovskites (DPs) are emerging materials for spintronics due to their stable structures and non-toxic properties. In this study, we conducted a comprehensive investigation into the role of 4d electrons in Tc to understand their impact on the ferromagnetic properties of K2TcY6 (Y = Cl, Br). We have employed a modified Back and Johnson potential to assess electronic and magnetic characteristics and utilized the BoltzTraP code to investigate thermoelectric effects. Experimental lattice constants confirmed the presence of stable structures and formation energy estimates affirmed their thermodynamic stability. The Heisenberg model and density of electron states (DOS) at the Fermi level provides insights into Curie temperature and spin polarization. The presence of ferromagnetism is evident in the density of states, reflecting the transition of electron spins that support the exchange mechanism. The study delves into how electron functionality influences the control of ferromagnetism, considering exchange constants, exchange energies, hybridization process and the crystal field energies. Moreover, the exploitation of magnetic moments from Tc to K and Cl/Br sites takes precedence in driving ferromagnetism by exchanging electron spins rather than forming magnetic clusters. Additionally, to explore the optical characteristics of the compounds, we investigated their optical absorption, dielectric constants and refractive index within the energy range of 0–10 eV, ensuring absorption across both the visible and ultraviolet regions. Finally, we delve into the impact of the thermoelectric effect on both thermoelectric performance and spin functionality, taking into account factors such as the Seebeck coefficient, power factor, and electronic conductivity.

Graphical abstract: Physical properties of vacancy-ordered double perovskites K2TcZ6 (Z = Cl, Br) for spintronics applications: DFT calculations

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
07 Nov 2023
Accepted
27 Dec 2023
First published
08 Jan 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 1822-1832

Physical properties of vacancy-ordered double perovskites K2TcZ6 (Z = Cl, Br) for spintronics applications: DFT calculations

H. A. Alburaih, S. Nazir, N. A. Noor, A. Laref and M. M. Saad H.-E., RSC Adv., 2024, 14, 1822 DOI: 10.1039/D3RA07603B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements