Issue 5, 2024

Advances in metal–organic frameworks for water remediation applications

Abstract

Rapid industrialization and agricultural development have resulted in the accumulation of a variety of harmful contaminants in water resources. Thus, various approaches such as adsorption, photocatalytic degradation and methods for sensing water contaminants have been developed to solve the problem of water pollution. Metal–organic frameworks (MOFs) are a class of coordination networks comprising organic-inorganic hybrid porous materials having organic ligands attached to inorganic metal ions/clusters via coordination bonds. MOFs represent an emerging class of materials for application in water remediation owing to their versatile structural and chemical characteristics, such as well-ordered porous structures, large specific surface area, structural diversity, and tunable sites. The present review is focused on recent advances in various MOFs for application in water remediation via the adsorption and photocatalytic degradation of water contaminants. The sensing of water pollutants using MOFs via different approaches, such as luminescence, electrochemical, colorimetric, and surface-enhanced Raman spectroscopic techniques, is also discussed. The high porosity and chemical tunability of MOFs are the main driving forces for their widespread applications, which have huge potential for their commercial use.

Graphical abstract: Advances in metal–organic frameworks for water remediation applications

Associated articles

Article information

Article type
Review Article
Submitted
21 Nov 2023
Accepted
05 Dec 2023
First published
22 Jan 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 3413-3446

Advances in metal–organic frameworks for water remediation applications

S. Lal, P. Singh, A. Singhal, S. Kumar, A. P. Singh Gahlot, N. Gandhi and P. Kumari, RSC Adv., 2024, 14, 3413 DOI: 10.1039/D3RA07982A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements