Molecular dynamics simulation on the displacement behaviour of crude oil by CO2/CH4 mixtures on a silica surface†
Abstract
Produced gas re-injection is an effective and eco-friendly approach for enhancing oil recovery from shale oil reservoirs. However, the interactions between different gas phase components, and the oil phase and rocks are still unclear during the re-injection process. This study aims to investigate the potential of produced gas re-injection, particularly focusing on the effects of methane (CH4) content in the produced gas on shale oil displacement. Molecular dynamics simulations were employed to analyze the interactions between gas, oil, and matrix phases with different CH4 proportions (0%, 25%, 50%, and 100%), alkanes and under various burial depth. Results show that a 25% CH4 content in the produced gas achieves almost the same displacement effect as pure carbon dioxide (CO2) injection. However, when the CH4 content increases to 50% and 100%, the interaction between gas and quartz becomes insufficient to effectively isolate oil from quartz, causing only expansion and slight dispersion. Interestingly, the presence of CH4 has a synergistic effect on CO2, facilitating the diffusion of CO2 into the oil film. During the gas stripping process, CO2 is the main factor separating oil from quartz, while CH4 mainly contributes to oil expansion. In addition, for crude oil containing a large amount of light alkanes, extracting light components through mixed gas may be more effective than pure CO2. This study offers valuable insights for applications of produced gas re-injection to promote shale oil recovery.