Design and preparation of novel antioxidant and antibacterial films containing procyanidins and phycocyanin for food packaging†
Abstract
The purpose of this study was to design a novel antioxidant and antibacterial film for food packaging using food-grade raw materials. The films were designed and fabricated based on carboxymethyl chitosan and pectin incorporated with procyanidins (PCs) and phycocyanin (Phy) by the tape casting method. The effects of different proportions of PCs and Phy on the properties and functions of the prepared films were studied. The results showed that the thickness of films could range from 55 to 70 μm, with dense network structure and uniform distribution of elements. Compared with C-Film group, the film loaded with PCs and Phy had lower water solubility and swelling rate, and higher tensile strength and elongation at break. FITR and XRD spectra revealed the molecular interaction mechanism among carboxymethyl chitosan, pectin, PCs and Phy, which could effectively endow the films with ultraviolet barrier properties. Moreover, the addition of PCs and Phy could effectively improve the antioxidant capacity and antibacterial effect of films, for example, the free radical scavenging abilities of most films were above 80% when the concentration of PCs was 40 μg mL−1. In view of these functional properties, the prepared film containing PCs and Phy have been successfully used in food packaging, which was proved by the preservation experiment of grapes. This study can provide theoretical and technical guidance for the preparation of biodegradable antibacterial films, and their application in the food packaging field.