Issue 17, 2024, Issue in Progress

PVDF/ZnO piezoelectric nanofibers designed for monitoring of internal micro-pressure

Abstract

Organic piezoelectric materials are emerging as integral components in the development of advanced implantable self-powered sensors for the next generation. Despite their promising applications, a key limitation lies in their reduced mechanical force-to-electricity conversion efficiency. In this study, we present a breakthrough in the fabrication of soft poly(vinylidene fluoride) (PVDF) organic electrospun piezoelectric nanofibers (OEPNs) with exceptional piezoelectric performance achieved through the incorporation of zinc oxide nanorods (ZnO NR). The inclusion of ZnO NR proved instrumental in augmenting the nanocrystallization of PVDF organic electrospun piezoelectric nanofibers (OEPNs), leading to a highly efficient crystal phase transformation from the α phase to the β/γ phase, serving as superior piezoelectric working dipoles. The resulting PVDF/ZnO NR OEPNs exhibited unparalleled piezoelectric output voltage and current density, particularly noteworthy under a micro-pressure of 1 kPa and a low frequency of 1.5 Hz. Utilizing the obtained PVDF/ZnO NR OEPNs as the piezoelectric working element, we engineered a soft self-powered micro-pressure sensor. This sensor was implanted simultaneously on the cardiovascular walls of the heart and femoral artery in pigs. The sensor demonstrated precise monitoring and recording capabilities for micro-pressure changes during various physiological states, spanning from wakefulness to coma, euthanasia, and notably, the formation of cardiac thrombus. These findings underscore the immense potential of the implantable self-powered sensor for the assessment and diagnosis of pressure-related cardiovascular diseases, such as thrombus and atherosclerosis, during the postoperative recovery phase. This innovative technology offers valuable insights into the dynamic physiological states, paving the way for enhanced postoperative care and management of cardiovascular conditions.

Graphical abstract: PVDF/ZnO piezoelectric nanofibers designed for monitoring of internal micro-pressure

Article information

Article type
Paper
Submitted
21 Dec 2023
Accepted
19 Mar 2024
First published
12 Apr 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 11775-11783

PVDF/ZnO piezoelectric nanofibers designed for monitoring of internal micro-pressure

G. Chang, X. Pan, Y. Hao, W. Du, S. Wang, Y. Zhou, J. Yang and Y. He, RSC Adv., 2024, 14, 11775 DOI: 10.1039/D3RA08713A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements