Issue 12, 2024, Issue in Progress

QSAR models for the ozonation of diverse volatile organic compounds at different temperatures

Abstract

In order to assess the fate and persistence of volatile organic compounds (VOCs) in the atmosphere, it is necessary to determine their oxidation rate constants for their reaction with ozone (kO3). However, given that experimental values of kO3 are only available for a few hundred compounds and their determination is expensive and time-consuming, developing predictive models for kO3 is of great importance. Thus, this study aimed to develop reliable quantitative structure–activity relationship (QSAR) models for 302 values of 149 VOCs across a broad temperature range (178–409 K). The model was constructed based on the combination of a simplified molecular-input line-entry system (SMILES) and temperature as an experimental condition, namely quasi-SMILES. In this study, temperature was incorporated in the models as an independent feature. The hybrid optimal descriptor generated from the combination of quasi-SMILES and HFG (hydrogen-filled graph) was used to develop reliable, accurate, and predictive QSAR models employing the CORAL software. The balance between the correlation method and four different target functions (target function without considering IIC or CII, target function using each IIC or CII, and target function based on the combination of IIC and CII) was used to improve the predictability of the QSAR models. The performance of the developed models based on different target functions was compared. The correlation intensity index (CII) significantly enhanced the predictability of the model. The best model was selected based on the numerical value of Rm2 of the calibration set (split #1, Rtrain2 = 0.9834, Rcalibration2 = 0.9276, Rvalidation2 = 0.9136, and Image ID:d3ra08805g-t1.gif calibration = 0.8770). The promoters of increase/decrease for log kO3 were also computed based on the best model. The presence of a double bond (BOND10000000 and $10 000 000 000), absence of halogen (HALO00000000), and the nearest neighbor codes for carbon equal to 321 (NNC-C⋯321) are some significant promoters of endpoint increase.

Graphical abstract: QSAR models for the ozonation of diverse volatile organic compounds at different temperatures

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
24 Dec 2023
Accepted
06 Feb 2024
First published
07 Mar 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 8041-8052

QSAR models for the ozonation of diverse volatile organic compounds at different temperatures

A. Azimi, S. Ahmadi, M. J. Javan, M. Rouhani and Z. Mirjafary, RSC Adv., 2024, 14, 8041 DOI: 10.1039/D3RA08805G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements