Multifunctional modification polyester with Au@Cu2O–ZnO ternary heterojunction fabricated by in situ polymerization
Abstract
In situ polymerization has been proven to be an effective method to introduce functional materials into polymers. In this work, a nano-heterojunction material was prepared successfully and evenly dispersed in PET by in situ polymerization methods to yield multifunctionally modified PET. The modified PET fibers showed excellent antibacterial activity and strong moisture absorption and perspiration, which could efficiently expel moisture from humans. Significantly, these prepared PET textiles demonstrate a strong safety without any cytotoxicity. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the uniform dispersion of heterojunctions and well-defined truncated octahedra including nano-gold rods. A series of characterizations including FTIR, XPS, XRD and DSC showed that the nano-heterojunction participates in the reaction during polymerization. It is interesting that the SEM images of the modified PET fiber presented an intriguing organ fold structure, which makes a significant contribution to moisture absorption and perspiration. The formation mechanism is discussed preliminarily.