Advanced hybrid silica nanoparticles with pH-responsive diblock copolymer brushes: optimized design for controlled doxorubicin loading and release in cancer therapy
Abstract
This study delves into the development, characterization, and application of modified mesoporous silica nanoparticles (MSNs) for targeted drug delivery in cancer therapy. MSNs were functionalized with poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) and poly(glycidyl methacrylate) (PGMA), and further modified with cross-linkers DAE and Ornithine. Characterization using FT-IR, SEM, TEM, DLS, and XPS confirmed the successful surface modifications, revealing particle sizes primarily within the 63–94 nm range. The MSNs demonstrated a pH-responsive behavior, crucial for smart drug delivery. Loading and release studies using Doxorubicin (DOX) showed a controlled release, with an 8 μg mg−1 loading capacity. Cytotoxicity assays on Caco2 colon cancer cells revealed that unloaded nano-systems, at concentrations above 45 μM, resulted in approximately 60% cell death, indicating inherent anti-cancer properties. However, variations in cytotoxic effects were observed in drug-loaded MSNs, with some modifications showing reduced anti-cancer activity. These findings highlight the potential of MSNs in drug delivery and cancer treatment, emphasizing the importance of nanoparticle design in therapeutic efficacy.