Issue 18, 2024, Issue in Progress

Fluorinated carbon as high-performance cathode for aqueous zinc primary batteries

Abstract

Fluorinated carbon (CFx) has been extensively served as promising positive electrode material for lithium primary batteries due to its high energy density. However, there are comparatively far less reports about the use of CFx on other battery systems, let alone on the research of aqueous batteries. Herein in this study, we employed CFx as the cathode active for aqueous zinc batteries for the first time and systematically investigated its electrochemical behavior under a series of aqueous zinc-ion electrolytes. As is discovered that the F/C ratio (the x value in CFx) of CFx have significant effects on the electrochemical performance of aqueous Zn/CFx batteries. Specifically, CF0.85 exhibits excellent electrochemical property with delivering a remarkable discharge capacity of 503 mA h g−1 and energy density of 388 W h kg−1 (at a current rate of 30 mA g−1 under temperature of 25 °C), much better than several other CFx electrode with F/C ratio of 0.70, 0.95, and 1.10, respectively. Besides, it also exhibits decent temperature performance with discharge capacities of 550 mA h g−1 at 50 °C and 460 mA h g−1 at 0 °C under current density of 30 mA g−1. Furthermore, the electrochemical discharge mechanism based on conversion reaction was further uncovered by applying XPS, XRD, SEM and EDS elemental analysis characterization techniques. In conclusion, these results demonstrate the potential application value of CFx in aqueous zinc primary batteries.

Graphical abstract: Fluorinated carbon as high-performance cathode for aqueous zinc primary batteries

Supplementary files

Article information

Article type
Paper
Submitted
01 Feb 2024
Accepted
07 Apr 2024
First published
17 Apr 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 12454-12462

Fluorinated carbon as high-performance cathode for aqueous zinc primary batteries

C. Xu, L. Zhang, F. Liu, R. Zhang and H. Yue, RSC Adv., 2024, 14, 12454 DOI: 10.1039/D4RA00835A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements