Issue 37, 2024, Issue in Progress

The phase behavior of CO2 injection in shale reservoirs with nano-pores

Abstract

The main purpose of this paper is to study the solubility of CO2 in oil and water phase under high temperature and pressure. Firstly, CO2-crude oil PVT experiments were carried out to determine the physical parameters of the reservoir fluid in the study field in order to clarify the interaction mechanism of CO2 with the crude oil. Secondly, the solubility of CO2 in the reservoir fluid under different pores and the minimum mixed-phase pressure of the CO2–crude oil system were calculated by the improved Peng–Robinson equation of state. In this paper, the effects of nano-pores limitation on CO2 solubility were studied. The results show that pressure increase is favorable to CO2 dissolution, the solubility increases with the increase of the oil–water ratio. CO2 solubility decreases with temperature increase. The greater the mineralization of formation water, the lower the CO2 solubility. Nanopore confinement causes the phase envelope to contract and the minimum mixed-phase pressure to decrease. When the pore radius is smaller, the restriction of the phase envelope is stronger. In this paper, the minimum mixing pressure of crude oil and carbon dioxide is reduced from 31.25 MPa at 50 nm to 21.25 MPa at 5 nm, thus it is beneficial for enhanced oil recovery (CO2-EOR). Nanopore confinement favors CO2 to enhance shale oil recovery. The results of this study are critical to evaluate the effect of CO2 sequestration, solubility and phase behavior changes of CO2 in shale reservoirs with nano-pores.

Graphical abstract: The phase behavior of CO2 injection in shale reservoirs with nano-pores

Article information

Article type
Paper
Submitted
18 Feb 2024
Accepted
29 Jul 2024
First published
27 Aug 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 27227-27240

The phase behavior of CO2 injection in shale reservoirs with nano-pores

T. Wan, K. Ding, Q. Xiong and J. Guo, RSC Adv., 2024, 14, 27227 DOI: 10.1039/D4RA01239A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements