Controlled delivery of 5-fluorouracil from monodisperse chitosan microspheres prepared by emulsion crosslinking
Abstract
This work aims to determine the optimal conditions for emulsion cross-linking of chitosan (CHS) with various molecular weights using glutaraldehyde as a cross-linking agent to produce 5-fluorouracil-loaded CHS microspheres (5-FU/CHS). Their drug loading and encapsulation efficiencies are found to be in the range of 3.87–12.35% and 20.13–70.45%, respectively. The dynamic light scattering results show that 5-FU/CHS microspheres are micron-sized with a uniform size distribution, and the scanning electron microscopy results show that they are spherical. The results of thermogravimetric analysis, X-ray diffraction, and Fourier transform infrared spectroscopy demonstrate that 5-FU is successfully incorporated into the microspheres. The in vitro release tests show that 5-FU/CHS have a prolonged, pH-responsive release pattern of 5-FU, and the cumulative release rate under acidic condition is much larger than that under neutral conditions. The drug release kinetic analysis further demonstrates that the release of 5-FU can be well described by the Fickian diffusion model.