Preparation and characterization of polydopamine and n-butyl methacrylate copolymer coatings on titanium–nickel alloy stents
Abstract
Cardiovascular diseases pose a significant global health threat, and stents play a crucial role in managing these diseases. However, challenges exist with respect to the poor adhesion of stent coatings. Cardiac stents are often composed of titanium–nickel (TiNi) alloys as the metallic component and poly(n-butyl methacrylate) (PBMA) as the coating. The poor adhesion of PBMA to TiNi alloy surface may cause detachment and subsequent thrombosis post-implantation. This study utilizes Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization to synthesize a novel block copolymer, PBMA-b-PVP, composed of PBMA and poly(N-vinylpyrrolidone) (PVP). TiNi alloy surfaces are functionalized with polydopamine (PDA) to enhance polymer coating adhesion. PBMA-b-PVP exhibits a remarkable improvement in adhesion from class 5 to class 0 and high coating stability after a 15 days immersion in a phosphate buffer solution. The corrosion current density is reduced by 44% with the incorporation of PDA into PBMA-b-PVP coatings, suggesting high corrosion resistance. PDA-functionalized coatings promote cell viability without cytotoxicity, suggesting high biocompatibility. This study provides a robust strategy for preparing stent coatings with high adhesion, corrosion resistance, and biocompatibility.