Issue 18, 2024

In situ one step growth of amorphous tin oxide electron transport layer for high-performance perovskite solar cells

Abstract

Tin oxide used in electron transport layer (ETL) exhibits key role in transmitting electrons and blocking holes in perovskite solar cells (PSCs) device. However, crystal tin oxide nanoparticles (NPs) become necessary to form SnO2 film by method of spin-coating, resulting in possible surface defect and cracks among SnO2 NPs, corresponding to unsatisfied performance PSCs. Herein, an amorphous tin oxide thin film is creatively in situ grew onto Fluorine-doped Tin Oxide (FTO) substrate as ETL. The designed solar cell device with structure of FTO/SnO2/MAPbI3/Sprio-OMeTAD/Ag owns a champion photoelectric conversion efficiency (PCE) up to 17.64%, 76.20% of filling coefficient (FF), and 1.09 V of open-circuit voltage (Voc), in comparing with 16.43%, 64.35% and 1.05 V for control group (crystal tin oxide as ETL), respectively. Besides, the champion device keeps 83.33% of initial PCE under nitrogen (N2) condition for one month, in comparison with 76.09% for control group. This work provides a viable strategy for facile preparing amorphous tin oxide film based ETL in perovskite solar cells.

Graphical abstract: In situ one step growth of amorphous tin oxide electron transport layer for high-performance perovskite solar cells

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
05 Mar 2024
Accepted
14 Apr 2024
First published
19 Apr 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 12650-12657

In situ one step growth of amorphous tin oxide electron transport layer for high-performance perovskite solar cells

W. Du, Z. Wan, J. Zhu, X. Liu, L. Chen, S. Li, N. Kang and C. Wang, RSC Adv., 2024, 14, 12650 DOI: 10.1039/D4RA01724B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements