Issue 29, 2024, Issue in Progress

Photoswitchable hydrazones with pyridine-based rotors and halogen substituents

Abstract

The Z,E-photoisomerization of pyridine-based hydrazone switches is typically suppressed due to the presence of pyridine-based rotors. The crystal structures of studied compounds were investigated using theoretical methods combining DFT and QT-AIM calculations to unveil the nature and properties of the intramolecular hydrogen bonding. In this study, we introduced a new series of pyridine-based hydrazones anchored with o-halogen substituents (2-X) and investigated their photoswitching abilities using 1H NMR and UV-Vis spectroscopy. The efficiency of the photoisomerization from initial 2-X-Z to the 2-X-E isomer varied, with the highest yield observed for 2-Cl-E (55%). Our findings, supported by DFT calculations, revealed the formation of a new diastereomer, 2-X-E*, upon back-photoisomerization. We demonstrated that hydrazones from the 2-X series can be reversibly photoswitched using irradiation from the UV-Vis range, and additionally, we explored the effect of the halogen atom on their switching capabilities and also on their thermodynamics and kinetics of photoswitching, determining their molecular solar thermal energy storage potential.

Graphical abstract: Photoswitchable hydrazones with pyridine-based rotors and halogen substituents

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
19 Apr 2024
Accepted
24 Jun 2024
First published
01 Jul 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 20856-20866

Photoswitchable hydrazones with pyridine-based rotors and halogen substituents

L. Kotásková, P. Jewula, R. Herchel, I. Nemec and P. Neugebauer, RSC Adv., 2024, 14, 20856 DOI: 10.1039/D4RA02909G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements