Issue 24, 2024, Issue in Progress

A high-spin s-triazine linked fluorenyl radical polymer

Abstract

The syntheses of high-spin organic polymers have been a daunting task due to the highly reactive nature of organic radicals, especially when they are ferromagnetically coupled. In this paper, we report our approach to obtain high-spin organic polymers, in which a reasonably stable fluorenyl radical was employed as the primary radical unit, and s-triazine serves as the connector that facilitates ferromagnetic coupling between them. Initially, the diamagnetic polymer precursor was synthesized by cyclotrimerization of a cyano-monomer. Subsequently, the high-spin polymers were obtained by oxidizing corresponding anionic polymers using O2 (6) or I2 (7). The temperature-dependent magnetic moments, and field-dependent magnetization data obtained from SQUID measurements revealed ferromagnetic couplings between primary radical units, with coupling J = 7.5 cm−1 and 38.6 cm−1. The percentages of primary unit in the radical form are 29%, and 47% for 6 and 7, respectively. Notably, this marks the first reported instance of a high-spin fluorenyl radical polymer exhibiting ferromagnetic coupling.

Graphical abstract: A high-spin s-triazine linked fluorenyl radical polymer

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
24 Apr 2024
Accepted
20 May 2024
First published
24 May 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 16945-16950

A high-spin s-triazine linked fluorenyl radical polymer

H. Phan, T. S. Herng, H. Xudong, L. K. Nguyen, V. T. La, C. D. Huynh, J. Ding and J. Wu, RSC Adv., 2024, 14, 16945 DOI: 10.1039/D4RA03034F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements