Issue 30, 2024, Issue in Progress

Modulating acid sites in Y zeolite for valorisation of furfural to get γ-valerolactone

Abstract

Furfural is a biomass-derived platform molecule that can be converted into a variety of useful products. Catalysts having appropriate balance between Lewis and Brønsted acid sites are suitable for valorisation of furfural. Lewis acidic metal ion incorporated zeolites were studied for this purpose. However, incorporating Lewis acidic metal ions into an alumino-silicate framework of a zeolite is a cumbersome process. Hence, an attempt has been made in this work to modulate the acid sites of Y zeolite via thermal treatment to effect controlled dealumination and use it for valorisation of furfural using isopropyl alcohol, which is a cascade transformation. The thermal treatment of zeolites changed the distribution of acid sites and increased the weak plus moderate to strong acid site ratio. Among the thermally dealuminated Y, beta and mordenite zeolites, with SiO2/Al2O3 ratio 5.2, 25 and 20, only Y zeolite could yield γ-valerolactone, the final product of the aimed cascade transformation. Complete conversion of furfural and 52% γ-valerolactone yield could be achieved under the optimized conditions using NH4Y zeolite thermally dealuminated at 700 °C (TY700). The better catalytic activity of TY700 could be correlated to a combination different factors such as framework structure, suitable weak plus moderate to strong acid site ratio, presence of both penta-coordinated and octahedral Al sites and balance between Brønsted and Lewis acid sites.

Graphical abstract: Modulating acid sites in Y zeolite for valorisation of furfural to get γ-valerolactone

Supplementary files

Article information

Article type
Paper
Submitted
26 Apr 2024
Accepted
01 Jul 2024
First published
08 Jul 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 21453-21463

Modulating acid sites in Y zeolite for valorisation of furfural to get γ-valerolactone

M. T. Jayakumari and C. K. Krishnan, RSC Adv., 2024, 14, 21453 DOI: 10.1039/D4RA03113J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements