2H-SnS2 assembled with petaloid 1T@2H-MoS2 nanosheet heterostructures for room temperature NO2 gas sensing†
Abstract
In this study, we explored the gas-sensing capabilities of MoS2 petaloid nanosheets in the metallic 1T phase with the commonly investigated semiconducting 2H phase. By synthesizing SnS2 nanoparticles and MoS2 petaloid nanosheets through a hydrothermal method, we achieve notable sensing performance for NO2 gas at room temperature (27 °C). This investigation represents a novel study, and to the best of our knowledge no, prior similar investigations have been reported in the literature for 1T@2HMoS2/SnS2 heterostructures for room temperature NO2 gas sensing. The formed heterostructure between SnS2 nanoparticles and petaloid MoS2 nanosheets exhibits synergistic effects, offering highly active sites for NO2 gas adsorption, consequently enhancing sensor response. Our sensor demonstrated a remarkable sensing response (Ra/Rg = 7.49) towards 1 ppm of NO2, rapid response time of 54 s, baseline recovery in 345 s, good selectivity and long-term stability, underscoring its potential for practical gas-sensing applications.