Issue 30, 2024, Issue in Progress

Extraction and separation of anthocyanins from Kushui rose by ethanol-(NH4)2SO4 aqueous two-phase system

Abstract

Simultaneous extraction of anthocyanins and removal of sugars from Kushui rose was performed using an ethanol-ammonium sulphate aqueous two-phase system (ATPS). The effects of different parameters, such as type of salt, concentrations of salt and ethanol, temperature and pH on the partition coefficient and recovery of anthocyanins in the top system and sugars in the bottom system were studied. Furthermore, an experimental design of a three-level three-factor Box–Behnken design response surface methodology (RSM) was used to obtain optimal extraction conditions. The maximum partition coefficient (5.64) and recovery (78%) of anthocyanins in the top system within the investigated range were obtained at 22% (w/w) concentration of ammonium sulphate, 25% (w/w) concentration of ethanol, pH 5 and 33.5 °C. During the discussion of the main factors, the maximum recovery of sugars reached 70.09%. The HPLC profile of anthocyanins obtained from the ATPS top phase was similar to that of anthocyanins extracted by ethanol, which indicated that the ethanol-ammonium sulphate ATPS was suitable for the extraction of anthocyanins. On the basis of the anthocyanin stability experiment, anthocyanins extracted from Kushui rose should be stored at low pH and temperature.

Graphical abstract: Extraction and separation of anthocyanins from Kushui rose by ethanol-(NH4)2SO4 aqueous two-phase system

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
30 Apr 2024
Accepted
21 Jun 2024
First published
05 Jul 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 21250-21259

Extraction and separation of anthocyanins from Kushui rose by ethanol-(NH4)2SO4 aqueous two-phase system

Y. Li, T. Li, H. An, X. Wang, J. Han and Y. Wang, RSC Adv., 2024, 14, 21250 DOI: 10.1039/D4RA03195D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements