Issue 29, 2024

Enhancing C–S and C–N bond formation with ultrasound assistance: lipase-catalyzed synthesis of 2,4-disubstituted thiazole derivatives from arylethanones and thioamides

Abstract

The present study explores an innovative approach for the efficient synthesis of 2,4-disubstituted thiazole derivatives, a class of compounds with diverse biological and pharmaceutical significance. This research presents lipase as a highly effective and environmentally friendly catalyst for thiazole synthesis. Under mild circumstances, the condensation of aryl ethenone, KBrO3, and thioamide is aided by using ultrasonic energy. Moreover, we harness the power of ultrasound irradiation to accelerate the reaction, reducing reaction times and improving product yields. The lipase-catalyzed, ultrasound-assisted synthesis presented in this study represents a greener and more sustainable alternative to traditional synthetic pathways for these important compounds, offering promising potential for applications in medicinal chemistry and drug development. This approach holds the promise of advancing the field of thiazole synthesis, contributing to more sustainable and efficient chemical processes.

Graphical abstract: Enhancing C–S and C–N bond formation with ultrasound assistance: lipase-catalyzed synthesis of 2,4-disubstituted thiazole derivatives from arylethanones and thioamides

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
04 May 2024
Accepted
25 Jun 2024
First published
05 Jul 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 21213-21218

Enhancing C–S and C–N bond formation with ultrasound assistance: lipase-catalyzed synthesis of 2,4-disubstituted thiazole derivatives from arylethanones and thioamides

P. Mahaur, K. Rajput, V. Singh, V. Srivastava and S. Singh, RSC Adv., 2024, 14, 21213 DOI: 10.1039/D4RA03290J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements