Issue 30, 2024

Exploration of the VEGFR-2 inhibition activity of phthalazine derivatives: design, synthesis, cytotoxicity, ADMET, molecular docking and dynamic simulation

Abstract

Novel phthalazine derivatives were designed, synthesized and evaluated against Hep G2 and MCF-7 as VEGFR-2 inhibitors. In particular, compounds 2g and 4a were found to be the most potent derivatives among all the tested compounds against MCF-7 and Hep G2 cancer cell lines with IC50 values of 0.15 and 0.12 and 0.18 and 0.09 μM respectively. Moreover, compounds 3a, 3c, 5a and 5b displayed excellent anticancer activities against MCF-7 and Hep G2 cancer cell lines. The highly active derivatives 2g, 3a, 3c, 4a, 5a and 5b were evaluated for their inhibitory activities against VEGFR-2. The tested compounds displayed high to low inhibitory activities with IC50 values ranging from 0.148 to 0.892 μM. Among them, compounds 2g and 4a were found to be the most potent derivatives that inhibited VEGFR-2 with IC50 values of 0.148 and 0.196 μM respectively. Compounds 3a, 3c, 5a and 5b exhibited good activity with IC50 values of 0.375, 0.892, 0.548 and 0.331 μM respectively. Sorafenib was used as a reference drug in this study. Molecular modeling studies were carried out for all compounds against the VEGFR-2 active site. The data obtained from biological testing highly correlated with those obtained from molecular modeling studies. Moreover, MD simulation results indicated the stability of ligand–target interaction. Furthermore, our derivatives 2g and 4a showed a good in silico calculated ADMET profile.

Graphical abstract: Exploration of the VEGFR-2 inhibition activity of phthalazine derivatives: design, synthesis, cytotoxicity, ADMET, molecular docking and dynamic simulation

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
10 May 2024
Accepted
26 Jun 2024
First published
08 Jul 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 21668-21681

Exploration of the VEGFR-2 inhibition activity of phthalazine derivatives: design, synthesis, cytotoxicity, ADMET, molecular docking and dynamic simulation

H. H. Bayoumi, M. Ibrahim, M. A. Dahab, F. Khedr and K. El-Adl, RSC Adv., 2024, 14, 21668 DOI: 10.1039/D4RA03459G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements