Issue 32, 2024

Synthesis of star-shaped poly(lactide)s, poly(valerolactone)s and poly(caprolactone)s via ROP catalyzed by N-donor tin(ii) cations and comparison of their wetting properties with linear analogues

Abstract

In this study, we report the use of N-coordinated tin(II) cations [L1→Sn(H2O)][OTf]2·THF (1) and [L1→SnCl][SnCl3] (2) (L1 = 1,2-(C5H4N-2-CH = N)2CH2CH2) as efficient ROP catalysts, which, in combination with benzyl alcohol, afford well-defined linear poly(ε-caprolactone) (PCL) and poly(δ-valerolactones) (PVL) via an activated monomer mechanism (AMM). Thanks to the versatility of complexes 1 and 2 as catalysts, star-shaped PCL, PVL and PLA were also prepared using three-, four-, five- and six-functional alcohols. The number of arms was determined by SEC-MALS-Visco analysis. Spin-coated thin layers of linear and selected six-armed polymers were further studied in terms of their wettability to water. Attention was focused on the influence of the composition and structure of the polymers. Finally, to increase the hydrophobic properties of the studied polymers, stannaboroxines L2(Ph)Sn[(OB-(C6H4-4-CF3))2O] and L2(Ph)Sn[(OB-(C6H4-3,5-CF3)2)2O] (L2 = C6H3-2,6-(Me2NCH2)2) were applied.

Graphical abstract: Synthesis of star-shaped poly(lactide)s, poly(valerolactone)s and poly(caprolactone)s via ROP catalyzed by N-donor tin(ii) cations and comparison of their wetting properties with linear analogues

Supplementary files

Article information

Article type
Paper
Submitted
13 May 2024
Accepted
14 Jul 2024
First published
24 Jul 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 23273-23285

Synthesis of star-shaped poly(lactide)s, poly(valerolactone)s and poly(caprolactone)s via ROP catalyzed by N-donor tin(II) cations and comparison of their wetting properties with linear analogues

M. Novák, Y. Milasheuskaya, M. Srb, Š. Podzimek, M. Bouška and R. Jambor, RSC Adv., 2024, 14, 23273 DOI: 10.1039/D4RA03515A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements