Issue 43, 2024

Aminated reduced graphene oxide-CuFe2O4 nanohybride adsorbent for efficient removal of imidacloprid pesticide

Abstract

To remove organic and inorganic agrochemicals from contaminated soil and water, adsorption has been regarded as a viable remediation approach. For the removal of organic pollutants, such as pesticides, cost-effective adsorbents have garnered a lot of interest. These include waste-derived materials, clay composites, metal–organic frameworks (MOFs), nanocomposites, and biochar-modified materials. In this study, copper ferrite (CuFe2O4) was prepared, characterized, and modified with aminated reduced graphene oxide (Am-rGO) to form a CuFe2O4/Am-rGO nanocomposite for the effective removal of imidacloprid (IMD) from water. The Langmuir isotherm model was used to determine the maximum adsorption capacity of the adsorbent (CuFe2O4/Am-rGO), which was estimated to be 13.1 (±1.5) mg g−1. At 0.5 mg L−1 IMD, the adsorbents were able to extract up to 97.8% of the IMD from the aqueous solution. The Freundlich model and the pseudo second-order model agreed well with the experimental data, proving that physisorption and chemosorption both played a role in the sorption process. CuFe2O4/Am-rGO nanocomposite offers high stability and improved reusability due to its improved removal efficiency. After five adsorption–desorption cycles, there was no appreciable reduction in elimination. Additionally, after adsorption tests, IMD can be easily removed after adsorption by an external magnetic field. These showed that Am-rGO had changed the surface of CuFe2O4 to make it easier for IMD to stick to it in aqueous solutions. When used adsorbent is co-processed with ethanol extraction and ultrasound cavitation, it can be regenerated and still work well as an adsorbent. Furthermore, CuFe2O4/Am-rGO demonstrated its environmental safety and ability to continue absorbing IMD across a variety of diverse matrices. As a result, this study demonstrates that CuFe2O4/Am-rGO is a long-lasting, easily prepared, and efficient adsorbent for the removal of IMD as one of the neonicotinoids.

Graphical abstract: Aminated reduced graphene oxide-CuFe2O4 nanohybride adsorbent for efficient removal of imidacloprid pesticide

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
20 May 2024
Accepted
23 Sep 2024
First published
07 Oct 2024
This article is Open Access
Creative Commons BY license

RSC Adv., 2024,14, 31683-31693

Aminated reduced graphene oxide-CuFe2O4 nanohybride adsorbent for efficient removal of imidacloprid pesticide

H. S. M. Abd-Rabboh and A. H. Kamel, RSC Adv., 2024, 14, 31683 DOI: 10.1039/D4RA03720K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements