Issue 40, 2024, Issue in Progress

Evaluation of magnetic hyperthermia, drug delivery and biocompatibility (bone cell adhesion and zebrafish assays) of trace element co-doped hydroxyapatite combined with Mn–Zn ferrite for bone tissue applications

Abstract

The treatment and regeneration of bone defects, especially tumor-induced defects, is an issue in clinical practice and remains a major challenge for bone substitute material invention. In this research, a composite material of biomimetic bone-like apatite based on trace element co-doped apatite (Ca10−δMδ(PO4)5.5(CO3)0.5(OH)2; M = trace elements of Mg, Fe, Zn, Mn, Cu, Ni, Mo, Sr and BO33−; THA)-integrated-biocompatible magnetic Mn–Zn ferrite ((Mn, Zn)Fe2O4 nanoparticles, BioMags) called THAiBioMags was prepared via a co-precipitation method. Its characteristics, i.e., physical properties, hyperthermia performance, ion/drug delivery, were investigated in vitro using osteoblasts (bone-forming cells) and in vivo using zebrafish. The synthesized THAiBioMags particles revealed superparamagnetic behaviour at room temperature. Under the influence of an alternating magnetic field, THAiBioMags particles demonstrated a change in temperature, indicating their potential for magnetic hyperthermia, in which THAiBioMags further exhibited a specific absorption rate (SAR) value of 9.44 W g−1 (I = 44 A, H = 6.03 kA m−1 and f = 130 kHz). In addition, the as-prepared particles demonstrated sustained ion/drug (doxorubicin (DOX)) release under physiological pH conditions. Biological assay analysis revealed that THAiBioMags exhibited no toxicity towards osteoblast cells and demonstrated excellent cell adhesion properties. In vivo studies employing an embryonic zebrafish model showed the non-toxic nature of the synthesized THAiBioMags particles, as revealed by evaluation of the survivability, hatching rate, and embryonic morphology. These results could potentially lead to the design and fabrication of magnetic scaffolds to be used in therapeutic treatment and bone regeneration.

Graphical abstract: Evaluation of magnetic hyperthermia, drug delivery and biocompatibility (bone cell adhesion and zebrafish assays) of trace element co-doped hydroxyapatite combined with Mn–Zn ferrite for bone tissue applications

Article information

Article type
Paper
Submitted
25 May 2024
Accepted
18 Aug 2024
First published
16 Sep 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 29242-29253

Evaluation of magnetic hyperthermia, drug delivery and biocompatibility (bone cell adhesion and zebrafish assays) of trace element co-doped hydroxyapatite combined with Mn–Zn ferrite for bone tissue applications

T. Tithito, S. Sillapaprayoon, V. Chantho, W. Pimtong, J. Thongbunchoo, N. Charoenphandhu, N. Krishnamra, N. Yong, A. Lert-itthiporn, W. Maneeprakorn and W. Pon-On, RSC Adv., 2024, 14, 29242 DOI: 10.1039/D4RA03867C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements