Issue 34, 2024, Issue in Progress

Mechanical properties and water vapour corrosion behaviour of AlxCoCrFeNi high-entropy alloys

Abstract

AlxCoCrFeNi (x = 0.1, 0.5 and 1) high-entropy alloys (HEAs) were prepared using a spark plasma sintering (SPS) technique combined with aerosol powder. Their microstructure and phase constituents were characterized using an X-ray diffractometer and SEM, and their tensile properties, hardness and compactness were tested. The results show that the crystal structure of the AlxCoCrFeNi HEAs changed significantly with the Al content, from the original single face-centered cubic FCC phase (Al0.1CoCrFeNi) to an FCC + BCC structure (Al0.5CoCrFeNi), and then to FCC + BCC + sigma (σ) phase structures (AlCoCrFeNi). Chemical composition analysis showed that the crystal structure transformation was related to the segregation caused by the increased Al content. The hardness of the AlxCoCrFeNi HEAs increases with increasing Al content, and the hardness of AlCoCrFeNi reaches a maximum of 507.3 HV. The tensile properties of the alloy show a trend of first increasing and then decreasing with increasing Al content, and the yield strength, ultimate tensile strength and elongation of the Al0.5CoCrFeNi alloy reach maximum values of 527.4 MP, 943.3 MPa and 28.2%, respectively. The fracture mechanism of the Al0.1CoCrFeNi and Al0.5CoCrFeNi alloys is typical ductile fracture, while that of the AlCoCrFeNi alloy is cleavage fracture. The compactness of the alloy increases with the Al content. The samples were also subjected to high-temperature water vapour corrosion, and corrosion products such as Al3Fe5O12, CoCr2O4 and NiCr2O4 were found in the Al0.1 and Al0.5 alloys, whereas no oxide peaks were detected using XRD for the Al1 alloy. It was also presumed that a very thin alumina film was generated on the surface of the Al1 alloy, preventing the oxidation of the sample, in combination with the analysis of SEM, EDS and XPS behaviour.

Graphical abstract: Mechanical properties and water vapour corrosion behaviour of AlxCoCrFeNi high-entropy alloys

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
27 May 2024
Accepted
27 Jul 2024
First published
07 Aug 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 24741-24748

Mechanical properties and water vapour corrosion behaviour of AlxCoCrFeNi high-entropy alloys

J. Zhang, L. Huang, K. Xiong, X. Wang, Z. Wang, D. Guo, Z. Li and W. Feng, RSC Adv., 2024, 14, 24741 DOI: 10.1039/D4RA03892D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements