Issue 34, 2024

Metal-based non-enzymatic systems for cholesterol detection: mechanisms, features, and performance

Abstract

Metal based catalysts and electrodes are versatile tools known for their redox properties, catalytic efficiency, and stability under various conditions. Despite the absence of significant scientific hurdles, the utilization of these methods in cholesterol detection, particularly in non-enzymatic approaches, has been relatively underexplored. To this end, there is a pressing need to delve deeper into existing metal-based systems used in non-enzymatic cholesterol sensing, with the goal of fostering the development of innovative practical solutions. Various electrode systems, such as those employing Ni, Ti, Cu, Zn, W, Mn, and Fe, have already been reported for non-enzymatic cholesterol detection, some of them elucidated sensing mechanisms and potential in physiological detection. A detailed mechanistic understanding of oxide-based cholesterol sensors, along with the methodologies for constructing such systems, holds promise of advancing the exploration of practical applications. This review aims to provide a broad perspective on metal oxide systems and their characteristics that are conducive to non-enzymatic cholesterol sensing. It is intended to serve as a springboard with offering a guide to the design and development of efficient and sensitive electrochemical cholesterol sensors.

Graphical abstract: Metal-based non-enzymatic systems for cholesterol detection: mechanisms, features, and performance

Article information

Article type
Review Article
Submitted
04 Jun 2024
Accepted
17 Jul 2024
First published
05 Aug 2024
This article is Open Access
Creative Commons BY license

RSC Adv., 2024,14, 24561-24573

Metal-based non-enzymatic systems for cholesterol detection: mechanisms, features, and performance

M. Ameen Sha, P. C. Meenu, H. Haspel and Z. Kónya, RSC Adv., 2024, 14, 24561 DOI: 10.1039/D4RA04104F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements