Zinc metal complexes synthesized by a green method as a new approach to alter the structural and optical characteristics of PVA: new field for polymer composite fabrication with controlled optical band gap
Abstract
The current study employed a novel approach to design polymer composites with modified structural and declined optical band gaps. The results obtained in the present work for polymer composites can be considered an original method to make a new field for research based on green chemistry. Natural dyes extracted from green tea were mixed with hydrated zinc acetate (Zn(CH3COO)2·2H2O) to produce a metal complex. FTIR results comprehensively established the formation of the Zn-metal complex. The interaction among various components of PVA : Zn-metal complex composite was investigated using FTIR spectroscopy. The non-existence of anion bands of acetate in the Zn-metal complex spectrum confirms the formation of the Zn-metal complex. XRD analysis reveals that the Zn-metal complex improves the amorphous phase of the PVA-based composites. The absorption edge of the doped films shifted towards the lower photon energies. Optical dielectric properties were used to determine N/m*, ε∞, τ, μopt, ωp, and ρopt; the W–D model was used to calculate Ed, Eo and no parameters. The optical dielectric loss parameter was used to determine the optical band gap while the Tauc model was employed to identify various types of electron transitions. The optical energy band gap was 6.05 eV for clean PVA while it decreased to 1 eV for PVA inserted with the Zn-metal complex. The increase in Urbach energy from 0.26 eV to 0.45 eV is an evidence of the boost of amorphous phases in PVA : Zn-metal complex composites. The nonlinear refractive index and the first-order and second-order nonlinear optical susceptibilities were determined. The value of Eo obtained from the W–D model closely matches the optical energy band gap obtained from the Tauc model, which indicates the precision of the analysis in the present study. The increase in SELF and VELF in the composite films establishes that new energy states assigned to the added Zn-metal complex amplify the probability of light–matter interaction.