Utilizing a graphene quantum dot/hydrogel nanocomposite for determination of cisplatin in urine samples
Abstract
Currently, the growth and development of cancer are rising in the world, and as a result, the use of anticancer drugs such as cisplatin has also increased. Considering that the therapeutic index of anticancer drugs is low, it is essential to design and develop an accurate and correct method to analyze and determine the concentration of anticancer drugs in the biological samples. In this study, graphene quantum dots/hydrogel nanocomposite was used to determine cisplatin concentration in urine samples. A three-dimensional network of polyvinyl alcohol hydrogel was composited with graphene quantum dots and used as a probe for the determination of cisplatin. The morphology and characterization of the probe were studied using high-resolution transmission electron microscopy, dynamic light scattering, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. This platform showed a linear calibration curve in the range from 4.3 to 25.0 ng mL−1 with a detection limit of 1.2 ng mL−1. The relative intra- and inter-day standard deviations of the probe for the determination of cisplatin were 1.8% and 3.6% (n = 5), respectively. The validated method was used for determination of cisplatin in urine samples of patients receiving this medication with acceptable results and good recoveries.