Issue 44, 2024, Issue in Progress

Zinc oxide/tin oxide nanoflower-based asymmetric supercapacitors for enhanced energy storage devices

Abstract

Research on energy storage devices has focused on improving asymmetric supercapacitors (ASCs) by utilizing two different electrode materials. In this work, we have successfully prepared a unique material, ZnO/SnO2 nanoflower, via the hydrothermal method. Graphene oxide (GO) was synthesized by applying the modified Hummers' technique. The ZnO/SnO2 nanoflower was deposited on a polypyrrole (PPY) nanotube/graphene oxide composite (ZS/GP) in two steps: in situ chemical polymerization, followed by a hydrothermal method. Electrochemical properties of the prepared material nanocomposite were analyzed by applying cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. An asymmetric supercapacitor (ASC) was constructed using ZS/GP nanocomposite as the positive electrode and Caesalpinia pod-based carbonaceous material as the negative electrode material, and its performance was investigated. As a result, the fabricated ASCs were found to have an excellent specific capacitance of 165.88 F g−1 at 1.4 V, with an energy density of 5.12 W h kg−1 and a power density of 2672 W kg−1. The prepared nanocomposite material for the ASC showed a cycle stability of 17k cycles at a current density of 5 A g−1. This study revealed that the electrode material ZS/GP nanocomposite is highly suitable for supercapacitor applications. The ASC device's extended cycle life experiments for 17k cycles produced a coulombic efficiency of 97% and a capacitance retention of 73%, demonstrating the promising potential of the electrode materials for greener as well as efficient energy storage applications while converting abundant bio waste into effective energy.

Graphical abstract: Zinc oxide/tin oxide nanoflower-based asymmetric supercapacitors for enhanced energy storage devices

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
23 Jul 2024
Accepted
27 Sep 2024
First published
14 Oct 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 32314-32326

Zinc oxide/tin oxide nanoflower-based asymmetric supercapacitors for enhanced energy storage devices

V. Molahalli, G. Soman, V. S. Bhat, A. Shetty, A. Alodhayb and G. Hegde, RSC Adv., 2024, 14, 32314 DOI: 10.1039/D4RA05340K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements