Issue 46, 2024

Application of response surface methodology for bioenergy generation in a yeast-based microbial fuel cell

Abstract

Microbial fuel cells (MFCs) provide a solution to valorise wastewater for energy generation. Wastewater containing oxytetracycline (OTC), an antibiotic, was treated in a yeast-based H-type MFC to obtain bioenergy. The effect of bakery yeast amount, initial OTC concentration, and NaCl concentration in an anodic chamber was investigated and optimum operating conditions were statistically determined via Box–Behnken design. The highest generated power was measured to be 219.3 mW m−2 using 3 g L−1 of bakery yeast, 0.003 M of OTC solution, and 0.006 M of NaCl in the anodic chamber, and experimental data showed a good fit to the model with higher R-sq values. The most important operating parameter was found to be the square of the initial OTC concentration, and this factor, as well as the amount of bakery yeast, has a main effect on the performance of yeast-based MFCs. Almost 70% of TOC removal was achieved under optimum reaction conditions.

Graphical abstract: Application of response surface methodology for bioenergy generation in a yeast-based microbial fuel cell

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
24 Jul 2024
Accepted
12 Oct 2024
First published
29 Oct 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 34356-34361

Application of response surface methodology for bioenergy generation in a yeast-based microbial fuel cell

C. Orak, RSC Adv., 2024, 14, 34356 DOI: 10.1039/D4RA05380J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements