Issue 44, 2024, Issue in Progress

Preparation and characterization of starch-based binders for binder jetting

Abstract

In recent years, binder jetting technology has made significant advances across industries, expanding the range of material options to meet diverse needs. Commonly used binders may leave residues during the sintering process, affecting surface quality and performance, and some may contain harmful substances. Therefore, there is a high demand for binders that are environmentally friendly and easy to remove. This study proposes to use sodium alginate and polyvinylpyrrolidone as additives to prepare starch-based inks that are both environmentally friendly and safe. The effects of additive composition, starch content, dispersant content, and dispersant ratio on the viscosity and stability of starch-based inks were studied. Through performance testing, the particle size, surface tension, rheological properties, and printability of inks with different components were demonstrated. The optimal ink formulation consists of 1 wt% starch and 0.3 wt% additives (30 wt% sodium alginate and 70 wt% PVP). The viscosity reaches 23 mPa s and the stability is excellent. The surface tension of the ink is 69.5 mN m−1, which is slightly higher than the surface tension requirements for the printhead. This article provides a new process route for binder jetting technology and lays the foundation for its application in green and environmental protection.

Graphical abstract: Preparation and characterization of starch-based binders for binder jetting

Article information

Article type
Paper
Submitted
26 Jul 2024
Accepted
04 Oct 2024
First published
15 Oct 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 32506-32516

Preparation and characterization of starch-based binders for binder jetting

H. Jiang, X. Yang and H. Wang, RSC Adv., 2024, 14, 32506 DOI: 10.1039/D4RA05411C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements