Issue 51, 2024

Sensing behavior of CdS-TiO2 thick films for the detection of hydrocarbons

Abstract

In this article, the sensing behaviors of undoped titanium dioxide (TiO2) and CdS-doped TiO2 (CdS-TiO2) thick films are discussed. Sensing pastes of 2 wt% CdS-TiO2 and undoped TiO2 were prepared in the laboratory and used to fabricate thick film gas sensors on an alumina substrate. The crystal structures of TiO2 and CdS-TiO2 samples were characterized by XRD and atomic force microscopy (AFM). The results indicated that the grain size and RMS roughness parameter were reduced by adding CdS contents. The sensing behaviors of the fabricated devices were studied at varying concentrations (0–5000 ppm) of different hydrocarbon gases, such as LPG, methanol, ethanol, toluene, and benzene, in ambient air at 300 K. The effect of humidity levels on the sensing properties of the sensors was also investigated. The sensor response value of CdS-TiO2 for benzene was found to be 2.25 times higher than that of TiO2-based sensing devices. Thus, CdS doping significantly enhanced the response and recovery times of the sensor. The TiO2 film exhibited response and recovery times of 65 s and 180 s, respectively. In contrast, when doped with CdS, the response times were reduced to 15 s and 103 s, respectively, when exposed to benzene at a concentration of 5000 ppm at 300 K. The sensing mechanism has been discussed and the experimental results were validated using a model based on the Frenkel–Poole theory of electronic emission and catalytic oxidation. The obtained results demonstrate that TiO2 structures doped with low concentrations of CdS exhibit superior sensitivity and selectivity to benzene gas under low humidity levels at room temperature (300 K).

Graphical abstract: Sensing behavior of CdS-TiO2 thick films for the detection of hydrocarbons

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
11 Aug 2024
Accepted
15 Nov 2024
First published
03 Dec 2024
This article is Open Access
Creative Commons BY license

RSC Adv., 2024,14, 38302-38310

Sensing behavior of CdS-TiO2 thick films for the detection of hydrocarbons

A. K. Vishwakarma, A. K. Sharma, A. Verma, B. C. Yadav and L. Yadava, RSC Adv., 2024, 14, 38302 DOI: 10.1039/D4RA05824K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements