Application of deep eutectic solvent-based aqueous two phase systems for extraction of analgesic drugs
Abstract
The ability of biphasic-aqueous systems to efficiently and simultaneously purify active pharmaceutical compounds has led to extensive study of these systems. As a new environmentally friendly separation technology, deep eutectic solvent (DES)-based aqueous two-phase systems (ATPSs) are extensively applied for the extraction and separation of various bioactive compounds. In this study, two DES-based ATPSs consisting of choline chloride/fructose and choline chloride/glucose as DESs with a molar ratio of 2 : 1 and tripotassium phosphate (K3PO4) were prepared. The measured binodal data correlated with Merchuk and Zafarani-Moattar et al. equations. Moreover, the ATPSs were employed to investigate the separation of pharmaceuticals. The partition coefficient and the effect of factors such as the concentration of the deep eutectic solvent on drug partitioning were investigated as novel discoveries. Drugs are likely to be removed in the top DES-rich phase, according to the current data. Finally, the compositions of five tie-lines for each ATPS were meticulously determined. Othmer–Tobias, Bancraft, and Setschenow equations were used for correlation of tie-line data.