Issue 49, 2024

Adsorption of molecular hydrogen (H2) on a fullerene (C60) surface: insights from density functional theory and molecular dynamics simulation

Abstract

Understanding the adsorption behavior of molecular hydrogen (H2) on solid surfaces is essential for a variety of technological applications, including hydrogen storage and catalysis. We examined the adsorption of H2 (∼2800 configurations) molecules on the surface of fullerene (C60) using a combined approach of density functional theory (DFT) and molecular dynamics (MD) simulations with an improved Lennard-Jones (ILJ) potential force field. First, we determined the adsorption energies and geometries of H2 on the C60 surface using DFT calculations. Calculations of the electronic structure help elucidate underlying mechanisms administrating the adsorption process by revealing how H2 molecules interact with the C60 surface. In addition, molecular dynamics simulations were performed to examine the dynamic behavior of H2 molecules on the C60 surface. We accurately depicted the intermolecular interactions between H2 and C60, as well as the collective behavior of adsorbed H2 molecules, using an ILJ potential force field. Our findings indicate that H2 molecules exhibit robust physisorption on the C60 surface, forming stable adsorption structures with favorable adsorption energies. Calculated adsorption energies and binding sites are useful for designing efficient hydrogen storage materials and comprehending the nature of hydrogen's interactions with carbon-based nanostructures. This research provides a comprehensive understanding of H2 adsorption on the C60 surface by combining the theoretical framework of DFT calculations with the dynamical perspective of MD simulations. The outcomes of the present research provide new insights into the fields of hydrogen storage and carbon-based nanomaterials, facilitating the development of efficient hydrogen storage systems and advancing the use of molecular hydrogen in a variety of applications.

Graphical abstract: Adsorption of molecular hydrogen (H2) on a fullerene (C60) surface: insights from density functional theory and molecular dynamics simulation

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
26 Aug 2024
Accepted
22 Oct 2024
First published
15 Nov 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 36546-36556

Adsorption of molecular hydrogen (H2) on a fullerene (C60) surface: insights from density functional theory and molecular dynamics simulation

M. T. Aziz, W. A. Gill, M. K. Khosa, S. Jamil and M. R. S. A. Janjua, RSC Adv., 2024, 14, 36546 DOI: 10.1039/D4RA06171C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements