Analytical detection of the bioactive molecules dopamine, thyroxine, hydrogen peroxide, and glucose using CsPbBr3 perovskite nanocrystals†
Abstract
Qualitative and quantitative detection of biologically important molecules such as dopamine, thyroxine, hydrogen peroxide, and glucose, using newer and cheaper technology is of paramount importance in biology and medicine. Anion exchange in lead halide perovskites, on account of its good emission yield, facilitates the sensing of these molecules by the naked eye using ultraviolet light. Simple chemistry is used to generate chloride ions from analyte molecules. Dopamine and thyroxine have an amine functional group, which forms an adduct with an equivalent amount of volatile hydrochloric acid to yield chloride ions in solution. The reducing nature of hydrogen peroxide and glucose is used to generate chloride ions through a reaction with sodium hypochlorite in stoichiometric amounts. The emission of CsPbBr3-coated paper/glass substrates shifts to the blue region in the presence of chloride ions. This helps in the detection of the above biologically important molecules up to parts per million (ppm) levels by employing fundamental chemistry aspects and well-known anion exchange in perovskite nanocrystals. The preparation of better and more efficient sensors, which are predominantly important in science and technology, can thus be achieved by developing the above novel, cost-effective alternative sensing method.