Issue 50, 2024

Development of flexible Zn/MnO2 secondary batteries using a fumed silica-doped hydrogel electrolyte

Abstract

Hydrogel electrolytes have received tremendous research interest in designing flexible zinc-ion secondary batteries, making them highly promising for flexible energy storage and wearable electronic devices. Herein, we report a composite hydrogel electrolyte (CHE) prepared using a fumed silica-doped gelatin hydrogel. This electrolyte is specifically designed for use in rechargeable aqueous Zn/MnO2 batteries (ReAZMBs). Experimental results showed that after fumed silica was added, the porosity and ionic conductivity of the gelatin hydrogel electrolyte increased. Meanwhile, adding fumed silica to the hydrogel electrolyte contributed to reducing self-corrosion and promoting rapid and uniform deposition of zinc ions. When the addition of fumed silica to gelatin was 10 wt%, ReAZMBs with this CHE exhibited a superior rate and cycling performance. More specifically, ReAZMBs with this CHE achieved an initial specific capacity of 150 mA h g−1 at a current density of 1.5 A g−1 and a capacity retention rate of 67% after 1000 cycles, which was much higher than that of the battery with the pure gelatin hydrogel electrolyte (33%). This was because of the improved interface stability between the zinc anode and electrolyte and the reduced formation of by-products (3Zn(OH)2·ZnSO4·3H2O and 3Zn(OH)2·ZnSO4·5H2O), according to the results of the charge–discharge test of Zn//Zn symmetric batteries and SEM and XRD characterizations of post-run zinc anodes. In addition, the ReAZMBs with the CHE demonstrated good flexibility and could supply power reliably even when bent.

Graphical abstract: Development of flexible Zn/MnO2 secondary batteries using a fumed silica-doped hydrogel electrolyte

Supplementary files

Article information

Article type
Paper
Submitted
13 Sep 2024
Accepted
05 Nov 2024
First published
22 Nov 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 37512-37520

Development of flexible Zn/MnO2 secondary batteries using a fumed silica-doped hydrogel electrolyte

W. Xiong, Q. Xie, H. Zhang, Md. A. Alam, C. Zhu, L. Wang and J. Xu, RSC Adv., 2024, 14, 37512 DOI: 10.1039/D4RA06602B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements