An exceptional water stable terbium-based metal–organic framework for selective detection of pesticides†
Abstract
A terbium-based metal–organic framework (MOF) with exceptional water stability for highly selective detection of pesticide thiamethoxam (TMX) in aqueous solution is reported. To date, most reported lanthanide metal–organic frameworks (Ln-MOFs) still exhibit poor water stability, which may limit their practical applications in bio-sensing and detecting pollutants in environmental water samples. In this work, a Tb-MOF [Tb(BDC)1.5(DEF)·0.5H2O]n (1, BDC = 1,4-benzene dicarboxylate, DEF = N,N-diethylformamide) was prepared by hydrothermal reactions of 1,4-benzenedicarboxylic acid with the corresponding rare earth ions of Tb3+. Impressively, water stability surveys of compound 1 indicated that it maintained at least 90% of its emission intensity after storage in water for several months. This characteristic of long water stability is unusual as compared to other Ln-MOFs, making compound 1 an excellent candidate for sensing applications in the aqueous phase. In particular, the green emission of compound 1 could be quenched by the pesticide thiamethoxam (TMX), which was attributed to both the static and dynamic quenching processes based on an upward-curving Stern–Volmer plot. The quenching mechanism was speculatively attributed to the inner filter effect combined with the complex formation based on the electrostatic interaction of compound 1 and TMX, resulting in the promotion of the quenching efficiency. Finally, compound 1 was demonstrated to detect TMX in aqueous solution with rapid response and high selectivity.