Dual spin nodal box structure in ternary ferromagnet K3NiCl6 with broad topological surface states†
Abstract
In recent years, there has been a discernible shift in research focus towards investigating the intricate interplay between topological states and intrinsic magnetic orders within the realm of condensed matter physics. Embedded within this evolving landscape, our study unveils an intriguing spin nodal box structure within the ferromagnetic compound K3NiCl6, manifesting under both spin directions. This distinctive configuration features a simplistic two-band crossing pattern that stands distinctly apart from other bands, making it amenable to both experimental validation and thorough theoretical exploration. The elucidation of the formation mechanism behind this spin nodal box has been meticulously achieved through systematic symmetry analyses, while the criteria for band crossings have been rigorously scrutinized using the Hubbard U method. Broad distribution of the surface state is derived from the Wannier tight-binding Hamiltonian and it is also well separated from the bulk band projection. More importantly, the band structure and the correlated surface states can be properly maintained even under the spin orbital coupling effect, attributed to the contributions from the light element orbitals associated with the relevant topological bands. Overall, the K3NiCl6 compound demonstrates a diverse array of advantages, positioning it as a promising candidate for experimental investigation, particularly in relation to its magnetic properties.