Issue 49, 2024

Characterization and enhanced carbon dioxide sensing performance of spin-coated Na- and Li-doped and Co-doped cobalt oxide thin films

Abstract

Recognizing the substantial effects of carbon dioxide on human health and the environment, monitoring CO2 levels has become increasingly vital. Owing to energy constraints and the widespread application of CO2 gas sensors, it is important to design cost-effective, more efficient, and faster response CO2 gas sensors that operate at room temperature and involve a low-cost technique. This study aims to develop a cost-effective and efficient CO2 gas detector that functions at room temperature and uses less power than traditional high-temperature CO2 sensors. In this study, we achieved this by employing innovative Co3O4 thin films with optimized spinel-structured p-type semiconductors through spin-coating, facilitated by Li and Na doping as well as Li/Na codoping. Doping with 3% Li/Na reduced the crystallite size from 92.4 to 8.03 nm and increased the band gap from 3.31 to 3.69 eV. At room temperature (30 °C), the sensor response improved significantly, increasing from 50% to 345.01% for 3% Li-Co3O4 upon the addition of 3% Na at a concentration of 9990 ppm. This performance surpasses that of most metal-oxide-based CO2 sensors reported in the literature. Additionally, this optimized sensor demonstrated a very short response time of 18.8 s and a recovery time of 16.4 s at a CO2 concentration of 9990 ppm diluted with air. It outperformed other films in terms of sensitivity, stability, response and recovery times, and performance across a wide range of relative humidity levels (43–90%). The sensor exhibited superior selectivity for CO2 than for N2, H2, and NH3. Overall, the 3% Li, Na-Co3O4 sensor is well-suited for climate change mitigation and industrial applications.

Graphical abstract: Characterization and enhanced carbon dioxide sensing performance of spin-coated Na- and Li-doped and Co-doped cobalt oxide thin films

Supplementary files

Article information

Article type
Paper
Submitted
22 Sep 2024
Accepted
31 Oct 2024
First published
20 Nov 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 36852-36867

Characterization and enhanced carbon dioxide sensing performance of spin-coated Na- and Li-doped and Co-doped cobalt oxide thin films

R. Saad, K. Abdelkarem, A. M. El Sayed, M. Shaban, I. A. Ahmed, M. T. Tammam and H. Hamdy, RSC Adv., 2024, 14, 36852 DOI: 10.1039/D4RA06847E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements