Issue 50, 2024, Issue in Progress

Crystal structure, bandgap, photoluminescence and resistivity properties of double perovskite Cs2AgBiCl6 single crystal and its thin film

Abstract

Lead-free Cs2AgBiCl6 double perovskite (Cs2AgBiCl6-DP) material, as a substitute for lead halide perovskite materials, has the advantages of environmental friendliness and high stability and has attracted much attention. However, the photoluminescence and conductive properties of Cs2AgBiCl6-DP have not been well studied. In this study, we prepared Cs2AgBiCl6-DP single crystals (SCs) by coordination–dissolution and coordination–precipitation method. Single- and powder-XRD, SEM, EDS, XPS, and EPR characterization were performed to confirm the structural characteristics of Cs2AgBiCl6-DP SCs. The Tauc diagram based on UV-visible (UV-vis) absorption spectroscopy reveals that the optical bandgap of Cs2AgBiCl6-DP SCs is extrapolated to 2.51 eV. Steady-state fluorescence spectra and time-resolved fluorescence spectra show that Cs2AgBiCl6-DP SCs has four fluorescence peaks entered at 443, 615, 650 and 723 nm and a fluorescence lifetime of about 4.16 ns. Cs2AgBiCl6/PMMA thin films were prepared by spin coating suspension (Cs2AgBiCl6 DP and PMMA in acetone solvent). The intensity of emission peak increases with the increase of light intensity at 369 nm. The intensity of emission peak located at 576 nm decreases with increasing incidence wavelength (from 369 to 454 nm) at 10 W m−2. The emission intensity remains basically unchanged under continuous illumination for 9 hours at 369 nm at 5 W m−2, which indicates that the Cs2AgBiCl6-DP thin film has good stability. In addition, the resistivity and block resistance show a negative exponential change with increasing temperature. These results provide some interesting ideas for the fields of photoluminescence and thermistors.

Graphical abstract: Crystal structure, bandgap, photoluminescence and resistivity properties of double perovskite Cs2AgBiCl6 single crystal and its thin film

Supplementary files

Article information

Article type
Paper
Submitted
26 Sep 2024
Accepted
07 Nov 2024
First published
21 Nov 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 37322-37329

Crystal structure, bandgap, photoluminescence and resistivity properties of double perovskite Cs2AgBiCl6 single crystal and its thin film

H. Gao, C. Wang, H. Shen, H. Zhou and X. Zhang, RSC Adv., 2024, 14, 37322 DOI: 10.1039/D4RA06936F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements