Issue 50, 2024, Issue in Progress

Influence of side-methyl substitution position on the phase state and microwave dielectric properties of triphenylacetylene-based liquid crystals

Abstract

Liquid crystal materials are well known in display applications, and their unique birefringence and electrical tunability can be utilised in microwave devices. This innovative technology modulates and filters microwave signals, replacing conventional semiconductors for a broad operational frequency band and tunable phase shift. Although isothiocyanatobiphenylacetylene-based liquid crystals exhibit low viscosity and large dielectric anisotropy, their applications in microwave communication are hampered by their broad near-crystalline phase temperature ranges. To address this limitation, this study designed and synthesized six fluorinated biphenylacetylene liquid crystal compounds with various benzene ring side-methyl substitutions (n = 3–5). The molecular structures, liquid crystal phases, and microwave dielectric properties were evaluated. Our findings indicate that compounds with methyl substitution at the Y2 position exhibited reduced melting points, an expanded nematic phase temperature range (ΔTn ≈ 92.3 °C), and an absence of near-crystalline phases. These compounds still maintain high microwave dielectric constants within the 9–30 GHz frequency band (Δεr = 0.9–1.3) and reduced maximum permittivity losses compared to their non-methyl-substituted counterparts, thereby improving the efficiency in the microwave frequency band. In contrast, the Y1 position substitution results in a significantly narrower nematic phase temperature range (approximately 2.6 °C on average) and a substantial decrease in the dielectric constant, with a Δεr reduction of about 0.3 compared to the Y2 substitution. This work shows that the side-methyl substitution can improve the performance of triphenylacetylene-based liquid crystals in microwave communication, providing valuable insight to aid the discovery of novel microwave liquid crystals.

Graphical abstract: Influence of side-methyl substitution position on the phase state and microwave dielectric properties of triphenylacetylene-based liquid crystals

Article information

Article type
Paper
Submitted
26 Sep 2024
Accepted
06 Nov 2024
First published
21 Nov 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 37341-37349

Influence of side-methyl substitution position on the phase state and microwave dielectric properties of triphenylacetylene-based liquid crystals

M. Lei, Y. Tu, L. Zhang, S. Wu, H. Chen, P. Lv, X. Wang and Z. Zhang, RSC Adv., 2024, 14, 37341 DOI: 10.1039/D4RA06941B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements