Biomimetic nanoparticles with red blood cell membranes for enhanced photothermal and immunotherapy for tumors†
Abstract
The alarming escalation in cancer incidence and mortality has thrust into spotlight the quest for groundbreaking therapeutic strategies. Our research delves into the potential of RDIR780, a novel class of biomimetic nanoparticles cloaked in red blood cell membranes, to significantly enhance their in vivo persistence and therapeutic potency. Through an exhaustive suite of experiments, we have charted the therapeutic horizons of RDIR780 in the realms of tumor photothermal synergistic immunotherapy and targeted drug delivery. Preliminary in vitro cellular assays have revealed that RDIR780 not only achieves remarkable uptake by tumor cells but also triggers swift tumor cell death under the influence of laser irradiation. Subsequent in vivo fluorescence imaging studies have corroborated the nanoparticles' propensity for tumor-specific accumulation, thereby bolstering the case for precision medicine. The results of the precise imaging techniques of therapeutic trials conducted on mice with implanted tumors have underscored the profound impact of RDIR780 when synergized with an anti-PD-L1 antibody. This synergistic approach has shown to fairly eradicate tumor growth, marking a significant stride in the battle against cancer. This pioneering endeavor not only lays down a formidable groundwork for the evolution of long-circulating photothermal therapeutic nanoparticles but also heralds a new era of transformative clinical interventions.