Issue 49, 2024

Selectively electrolyzing CO2 to ethylene by a Cu–Cu2O/rGO catalyst derived from copper hydroxide nanostrands/graphene oxide nanosheets

Abstract

Electrolyzing CO2 into ethylene (C2H4) is a promising strategy for CO2 utilization and carbon neutrality since C2H4 is an important industrial feedstock. However, selectively converting CO2 into C2H4 via the CO2 electro-reduction reaction (CO2 ERR) is still a great challenge. Herein, Cu–Cu2O nanoparticles anchored on reduced graphene oxide nanosheets (Cu–Cu2O/rGO) were prepared from copper hydroxide nanostrands (CHNs) and graphene oxide (GO) nanosheets via in situ electrochemical reduction. Cu–Cu2O nanoparticles with diameter less than 10 nm were formed on the surface of rGO nanosheets. After assembling the Cu–Cu2O/rGO catalyst into a flow cell, it demonstrated high Faraday efficiencies (FEs) of 55.4%, 37.6%, and 6.7% for C2H4, C2H6, and H2, respectively, and a total 93% FE for C2 at −1.3 V vs. the standard hydrogen electrode (SHE). Moreover, its FE was 68.2% for C2H4, 10.2% for C2H6, and 20.5% for H2 at −1.4 (vs. SHE). Besides, no liquid carbon product was detected. This high selectivity is attributed to the synergistic effect arising from the small diameter of Cu–Cu2O NPs with the combination of Cu0–Cu+ and rGO nanosheets, which promotes the activation of CO2 molecules, facilitates C–C coupling, and enhances stability. This may provide a facile way for designing an efficient catalyst for selectively electrolyzing CO2 into valuable C2 chemicals.

Graphical abstract: Selectively electrolyzing CO2 to ethylene by a Cu–Cu2O/rGO catalyst derived from copper hydroxide nanostrands/graphene oxide nanosheets

Supplementary files

Article information

Article type
Paper
Submitted
09 Oct 2024
Accepted
30 Oct 2024
First published
15 Nov 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 36602-36609

Selectively electrolyzing CO2 to ethylene by a Cu–Cu2O/rGO catalyst derived from copper hydroxide nanostrands/graphene oxide nanosheets

C. Peng, B. Yao, L. Wang and X. Wan, RSC Adv., 2024, 14, 36602 DOI: 10.1039/D4RA07259F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements