Issue 54, 2024

Polyacrylamide-based hydrogel electrolyte for modulating water activity in aqueous hybrid batteries

Abstract

While zinc-ion and hybrid aqueous battery systems have emerged as potential substitutes for expensive lithium-ion batteries, issues like side reactions, limited electrochemical stability, and electrolyte leakage hinder their commercialization. Due to their low cost, high stability, minimal leakage risks, and a wide variety of modification opportunities, hydrogel electrolytes are considered the most promising solution compared to liquid or solid electrolytes. Here, we synthesized a dual-function hydrogel electrolyte based on polyacrylamide and poly(ethylene dioxythiophene):polystyrene (PPP). This electrolyte reduces water content and enhances stability by minimizing side reactions while swelling in a binary ethylene glycol and water solution (EG 10%) further stabilizes the battery system. The developed hydrogel exhibits relatively good ionic conductivity (1.6 × 10−3 S cm−1) and excellent electrochemical stability, surpassing 2.5 V on linear sweep voltammetry tests. The PPP-based system reached a value of 119.2 mA g−1, while the aqueous electrolyte reached only 80.4 mA g−1 specific capacity. The rechargeable PPP hydrogel electrolyte-based hybrid aqueous battery with zinc anode achieved more than 600 cycles. Coulombic efficiency (CE) remained at 99%, indicating good electrochemical reaction stability and reversibility. This study highlights the potential of polyacrylamide-based hydrogel electrolytes with dual functionality as the electrolyte and separator, inspiring further development in hydrogel electrolytes for aqueous battery systems. This study highlights the potential of polyacrylamide-based hydrogel electrolytes with dual functionality as the electrolyte and separator, inspiring further development in hydrogel electrolytes for aqueous battery systems.

Graphical abstract: Polyacrylamide-based hydrogel electrolyte for modulating water activity in aqueous hybrid batteries

Supplementary files

Article information

Article type
Paper
Submitted
22 Oct 2024
Accepted
17 Dec 2024
First published
23 Dec 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 40222-40233

Polyacrylamide-based hydrogel electrolyte for modulating water activity in aqueous hybrid batteries

D. Rakhman, D. Batyrbekuly, B. Myrzakhmetov, K. Zhumagali, K. Issabek, O. Sultan-Akhmetov, N. Umirov, A. Konarov and Z. Bakenov, RSC Adv., 2024, 14, 40222 DOI: 10.1039/D4RA07551J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements