Issue 11, 2024

Evaluating metal-free quaternized boronate esters as efficient catalysts for the fixation of CO2 with epoxides to form cyclic carbonates under suitable conditions

Abstract

The conversion of CO2 into high value-added chemicals is receiving increasing attention from the scientific community, commercial enterprises, and policymakers due to environmental problems like global warming. Herein, metal-free quaternized boronate esters (QBE1QBE8) were prepared and then used as potential efficient metal-free catalysts for the chemical valorization of CO2 to organic cyclic carbonates under solvent-free and sustainable green atmospheric and high-pressure conditions (1 atm or 1.6 MPa, 100 °C, 2 h) as an alternative to toxic reagents such as phosgene. Analyses performed with various spectroscopic tools (1H, 13C, and 11B NMR, FT-IR, UV-vis, LC-MS/MS, elemental analysis, and melting point measurement together with thermal gravimetric analysis (TGA-DTA)) revealed that the targeted quaternized boronate esters were successfully synthesized. After that, the Lewis acidity of the synthesized quaternized boronate esters was investigated by the traditional Gutmann–Beckett method and found to range from 53.72 to 50.47 ppm, respectively. In the presence of 0.1 mol% metal-free quaternized boronate ester QBE3 and 0.2 mol% co-catalyst DMAP, 4-chloromethyl-1,3-dioxalan-2-one was obtained as a cyclic carbonate in 51.7% yield at 1 atm and 100 °C and then under 1.6 MPa and 100 °C in an excellent 94.9% yield with 97.9% selectivity in 2 h, allowing us to facilitate the fixation of CO2 into cyclic carbonates rapidly. According to the catalytic findings, the optimum cat./ECH ratio for CO2 cycloaddition reactions is 1/1000.

Graphical abstract: Evaluating metal-free quaternized boronate esters as efficient catalysts for the fixation of CO2 with epoxides to form cyclic carbonates under suitable conditions

Supplementary files

Article information

Article type
Paper
Submitted
12 Jun 2024
Accepted
30 Jul 2024
First published
31 Jul 2024

React. Chem. Eng., 2024,9, 2938-2953

Evaluating metal-free quaternized boronate esters as efficient catalysts for the fixation of CO2 with epoxides to form cyclic carbonates under suitable conditions

E. Yasar, E. Aytar and A. Kilic, React. Chem. Eng., 2024, 9, 2938 DOI: 10.1039/D4RE00282B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements