Issue 9, 2024

Direct imaging of dynamic heterogeneous lithium–gold interaction at the electrochemical interface during the charging/discharging processes

Abstract

Lithium can smoothly plate on certain lithium alloys in theory, such as the Li–Au alloy, making the alloy/metal films promising current collectors for high energy density anode-free batteries. However, the actual performance of the batteries with alloy film electrodes often rapidly deteriorates. It remains challenging for current imaging approaches to provide sufficient details for fully understanding the process. Here, a “see-through” operando optical microscopic approach that allows direct imaging of Li–Au interaction with high spatiotemporal and chemical resolution has been developed. Through this approach, a two-step Li–Au alloying process that exhibits interesting complementary spatiotemporal evolution paths has been discovered. The alloying process regulates the nucleation of further Li deposition, while the Li nucleation sites generate pores on the electrode film. After several cycles, film rupture occurs due to the generation of an increased number of pores, thus explaining the previously unclear mechanism of poor cycling stability. We have also elucidated the deterioration mechanism of silver electrodes: the growth of defect pores in size, independent of the alloying process. Overall, this new imaging approach opens up an effective and simple way to monitor the dynamic heterogeneity of metal–metal interaction at the electrochemical interface, which could provide helpful insight for designing high-performance batteries.

Graphical abstract: Direct imaging of dynamic heterogeneous lithium–gold interaction at the electrochemical interface during the charging/discharging processes

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
25 Sep 2023
Accepted
16 Jan 2024
First published
17 Jan 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 3192-3202

Direct imaging of dynamic heterogeneous lithium–gold interaction at the electrochemical interface during the charging/discharging processes

J. Mao, G. Li, D. Xu and R. Hao, Chem. Sci., 2024, 15, 3192 DOI: 10.1039/D3SC05021A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements